SOUTHERN LEHIGH SCHOOL DISTRICT
5775 Main Street
Center Valley, PA 18034

Scope and Sequence for Grade 6 Mathematics

Standards for Mathematical Practice:

MP1 Make sense of problems and persevere in solving them.
MP2 Reason abstractly and quantitatively.
MP3 Construct viable arguments and critique the reasoning of others.
MP4 Model with mathematics.

MP5 Use appropriate tools strategically.
MP6 Attend to precision.
MP7 Look for and make use of structure.
MP8 Look for and express regularity in repeated reasoning.

6.RPA - Ratios \& Proportional Relationships

CCSSM
Understand ratio concepts and use ratio r
6.RPA. 1
Understand the concept of a ratio and use ratio 1 between two quantities. For example, "The ratio the zoo was 2:1, because for every 2 wings there candidate A received, candidate C received near
6.RPA. 2
Understand the concept of a unit rate a / b associa rate language in the context of a ratio relationship ratio of 3 cups of flour to 4 cups of sugar, so the sugar." "We paid $\$ 75$ for 15 hamburgers, which ${ }^{1}$ Expectations for unit rates in this grade are limited to
This section continues on the next page...

PA Core Standards for Mathematics

CC.2.1.6.D. 1

Understand ratio concepts and use ratio reasoning to solve problems.

6.RPA - Ratios \& Proportional Relationships Continued...

CCSSM	PA Core Standards for Mathematics
6.RPA. 3 Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. a) Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios. b) Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed? c) Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent. d) Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.	CC.2.1.6.D. 1 Continued...
Pennsylvania System of School Assessment (PSSA)	M06.A-R Ratios and Proportional Relationships
M06.A-R. 1 Understand ratio concepts and use ratio reasoning to solve problems	
M06.A-R.1.1 Represent and/or solve real-world and mathematical problems using rates, ratios, and/or percents. This section continues on the next page...	M06.A-R.1.1.1 Use ratio language and notation (such as 3 to $4,3: 4,3 / 4$) to describe a ratio relationship between two quantities. Example 1: "The ratio of girls to boys in a math class is 2:3 because for every 2 girls there are 3 boys." Example 2: "For every five votes candidate A received, candidate B received four votes."

6.RPA - Ratios \& Proportional Relationships Continued...

CCSSM		PA Core Standards for Mathematics
6.RPA.1 Continued...6.RPA.2 Continued...6.RPA.3 Continued...Pennsylvania System of School Assessment (PSSA) M06.A-R.1 Understand ratio concepts and use ratio M06.A-R.1.1 Continued...		CC.2.1.6.D. 1 Continued...
		M06.A-R Ratios and Proportional Relationships
		problems Continued...
		M06.A-R.1.1.1 Continued...
		M06.A-R.1.1.2 Find the unit rate a / b associated with a ratio $a: b$ (with $b=10)$ and use rate language in the context of a ratio relationship. Example 1: "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is 3/4 cup of flour for each cup of sugar." Example 2: "We paid $\$ 75$ for 15 hamburgers, which is a rate of $\$ 5$ per hamburger."
		M06.A-R.1.1.3 Construct tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and/or plot the pairs of values on the coordinate plane. Use tables to compare ratios.
		M06.A-R.1.1.4 Solve unit rate problems including those involving unit pricing and constant speed. Example: If it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?
		M06.A-R.1.1.5 Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $30 / 100$ times the quantity); solve problems involving finding the whole, given a part and the percentage.

6.NS - The Number System

CCSSM

PA Core Standards for Mathematics

Apply and extend previous understanding of multiplication and division to division to divide fractions by fractions.

6.NS. 1

Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for $(2 / 3) \div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)=8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share $1 / 2$ lb of chocolate equally? How many $3 / 4$-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length $3 / 4$ mi and area $1 / 2$ square mi?.

Pennsylvania System of School Assessment (PSSA)

M06.A-N. 1 Apply and extend previous understanding of multiplication and division to divide fractions by fractions

M06.A-N.1.1

Solve real-world and mathematical problems involving division of fractions.

M06.A-N.1.1.

Interpret and compute quotients of fractions (including mixed numbers), and solve word problems involving division of fractions by fractions.
Example 1: Given a story context for $(2 / 3) \div(3 / 4)$, explain that $(2 / 3) \div(3 / 4)=8 / 9$
because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=(a / b) \times(d / c)=a d / b c$.)
Example 2: How wide is a rectangular strip of land with length $3 / 4$ mi and area 1/2 square mi?
Example 3: How many 2 1/4-foot pieces can be cut from a 15 1/2-foot board?

CCSSM

PA Core Standards for Mathematics
Compute fluently with multi-digit numbers and find common factors and multiples
6.NS. 2

Fluently divide multi-digit numbers using the standard algorithm.

6.NS. 3

Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

This section continues on the next page...

6.NS - The Number System Continued...

CCSSM		PA Core Standards for Mathematics
6.NS. 2 Continued... 6.NS. 3 Continued...		CC.2.1.6.E.2 Continued...
	Pennsylvania System of School Assessment (PSSA)	M06.A-N The Number System
M06.A-N. 2 Compute with multi-digit numbers and find common factors and multiples		
	M06.A-N.2.1 Compute with multi-digit numbers using the four arithmetic operations with or without a calculator.	M06.A-N.2.1.1 Solve problems involving operations $(+,-, \times$, and \div) with whole numbers, decimals (through thousandths), straight computation, or word problems.
CCSSM		PA Core Standards for Mathematics
6.NS. 4 Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.		CC.2.1.6.E. 3 Develop and/or apply number theory concepts to find common factors and multiples.
Pennsylvania System of School Assessment (PSSA) \quad M06.A-N The Number System		
M06.A-N. 2.2 Apply number theory concepts (specifically, factors and multiples).		M06.A-N.2.2.1 Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 .
		M06.A-N.2.2.2 Apply the distributive property to express a sum of two whole numbers, 1 through 100, with a common factor as a multiple of a sum of two whole numbers with no common factor. Example: Express $36+8$ as $4(9+2)$.

6.NS - The Number System Continued...

CCSSM

PA Core Standards for Mathematics

Apply and extend previous understanding of numbers to the system of rational numbers

6.NS. 5

Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.

6.NS. 6

Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.
a) Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.
b) Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.
c) Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.

6.NS. 7

Understand ordering and absolute value of rational numbers.
a) Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
b) Write, interpret, and explain statements of order for rational numbers in realworld contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.
c) Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $|-30|=30$ to describe the size of the debt in dollars. This section continues on the next page...

CC.2.1.6.E. 4

Apply and extend previous understandings of numbers to the system of rational numbers.

6.NS - The Number System Continued...

CCSSM
 PA Core Standards for Mathematics

6.NS. 5 Continued...

6.NS. 6 Continued...

6.NS. 7 Continued...

6.NS. 7 Continued...

Understand ordering and absolute value of rational numbers.
d) Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.
6.NS. 8

Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

Pennsylvania System of School Assessment (PSSA)

M06.A-N. 3 Apply and extend previous understandings of numbers to the system of rational numbers

M06.A-N. 3.1
Understand that positive and negative numbers are used together to describe quantities having opposite directions or values and locations on the number line and coordinate plane.

This section continues on the next page...

CC.2.1.6.E. 4 Continued...

Represent quantities in real-world contexts using positive and negative numbers, explaining the meaning of 0 in each situation (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge).

M06.A-N.3.1.2

Determine the opposite of a number and recognize that the opposite of the opposite of a number is the number itself (e.g. $-(3)=3 ; 0$ is its own opposite).

M06.A-N.3.1.3

Locate and plot integers and other rational numbers on a horizontal or vertical number line; locate and plot pairs of integers and other rational numbers on a coordinate plane.

6.EE - Expressions \& Equations

CCSSM

PA Core Standards for Mathematics

Apply and extend previous understanding of arithmetic to algebraic expressions.

6.EE. 1

Write and evaluate numerical expressions involving whole-number exponents.

6.EE. 2

Write, read, and evaluate expressions in which letters stand for numbers.
a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from $5^{\prime \prime}$ as $5-y$.
b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms.
c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.

6.EE. 3

Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y$ $+y$ to produce the equivalent expression $3 y$.

This section continues on the next page...

6.EE - Expressions \& Equations Continued...

CCSSM

PA Core Standards for Mathematics

6.EE. 1 Continued...

6.EE. 2 Continued...

6.EE. 3 Continued...

6.EE. 4

Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.

Reason about and solve one-variable equations and inequalities

6.EE. 5

Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.

6.EE. 6

Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.

6.EE. 7

Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.

6.EE. 8

Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the
form $x>c$ or $x<\mathrm{c}$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.

This section continues on the next page...

6.EE - Expressions \& Equations Continued...

CCSSM	PA Core Standards for Mathematics
6.EE. 1 Continued... 6.EE. 2 Continued... 6.EE. 3 Continued... 6.EE. 4 Continued... 6.EE. 5 Continued... 6.EE. 6 Continued... 6.EE. 7 Continued... 6.EE. 8 Continued...	CC.2.2.6.B.1 Continued... CC.2.2.6.B. 2 Continued...
Pennsylvania System of School Assessment (PSSA)	M06.B-E Expressions and Equations
M06.B-E. 1 Apply and extend previous understanding of arithmetic to numerical and algebraic expressions.	
Identify, write, and evaluate numerical and algebraic expressions.	M06.B-E.1.1.1 Write and evaluate numerical expressions involving whole-number exponents.
	M06.B-E.1.1.2 Write algebraic expressions from verbal descriptions. Example: Express the description "five less than twice a number" as $2 y-5$.
	M06.B-E.1.1.3 Identify parts of an expression using mathematical terms (e.g., sum, term, product, factor, quotient, coefficient, quantity). Example: Describe the expression $2(8+7)$ as a product of two factors.
	M06.B-E.1.1.4 Evaluate expressions at specific values of their variables, including expressions that arise from formulas used in real-world problems. Example: Evaluate the expression $b^{2}-5$ when $b=4$.
This section continues on the next page...	M06.B-E.1.1.5 Apply the properties of operations to generate equivalent expressions. Example 1: Apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$. Example 2: Apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$. Example 3: Apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.

6.EE - Expressions \& Equations Continued...

CCSSM	PA Core Standards for Mathematics
6.EE. 1 Continued... 6.EE. 2 Continued... 6.EE. 3 Continued... 6.EE. 4 Continued... 6.EE. 5 Continued... 6.EE. 6 Continued... 6.EE. 7 Continued... 6.EE. 8 Continued...	CC.2.2.6.B. 1 Continued... CC.2.2.6.B. 2 Continued...
Pennsylvania System of School Assessment (PSSA)	M06.B-E Expressions and Equations
M06.B-E. 1 Apply and extend previous understanding of arithmetic to numerical and algebraic expressions.	
M06.B-E.1. 1 Identify, write, and evaluate numerical and algebraic expressions.	M06.B-E.1.1.1; M06.B-E.1.1.2; M06.B-E.1.1.3; M06.B-E.1.1.4; M06.B-E.1.1.5 Continued... Write and evaluate numerical expressions involving whole-number exponents.
Pennsylvania System of School Assessment (PSSA)	M06.B-E Expressions and Equations
M06.B-E. 2 Interpret and solve one-variable equations and equalities	
M06.B-E.2.1 Create, solve, and interpret one-variable equations or inequalities in real-world and mathematical problems.	M06.B-E.2.1.1 Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
	M06.B-E.2.1.2 Write algebraic expressions to represent real-world or mathematical problems.
	M06.B-E.2.1.3 Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q, and x are all non-negative rational numbers.
	M06.B-E.2.1.4 Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem and/or represent solutions of such inequalities on number lines.

6.EE - Expressions \& Equations Continued...

CCSSM	PA Core Standards for Mathematics
6.EE. 9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the relationship between distance and time.	
Pennsylvania System of School Assessment (PSSA)	M06.B-E Expressions and Equations
M06.B-E. 3 Represent and analyze quantitative relationships between dependent and independent variables.	
M06.B-E.3.1 Use variables to represent two quantities in a real-world problem that change in relationship to one another.	M06.B-E.3.1.1 Write an equation to express the relationship between the dependent and independent variables. Example: In a problem involving motion at a constant speed of 65 units, write the equation $d=65$ t to represent the relationship between distance and time.
	M06.B-E.3.1.2 Analyze the relationship between the dependent and independent variables using graphs and tables and/or relate these to an equation.

6.G-Geometry

CCSSM

PA Core Standards for Mathematics

Solve real-world and mathematical problems involving area, surface area,

 and volume
6.G. 1

Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.

6.G. 2

Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=l w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

6.G. 3

Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving realworld and mathematical problems.

6.G. 4

Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.

CC.2.3.6.A. 1

Apply appropriate tools to solve real-world and mathematical problems involving area, surface area, and volume.

Pennsylvania System of School Assessment (PSSA)

M06.C-G. 1 Solve real-world and mathematical problems involving area, surface area, and volume.

M06.C-G.1.1

Find area, surface area, and volume by applying formulas and using various strategies

M06.C-G.1.1.1

Determine the area of triangles and special quadrilaterals (i.e., square, rectangle, parallelogram, rhombus, and trapezoid). Formulas will be provided.

M06.C-G.1.1.2

Determine the area of irregular or compound polygons.
Example: Find the area of a room in the shape of an irregular polygon by composing and/or decomposing.

This section continues on the next page...

6.G - Geometry Continued...

6.SP - Statistics \& Probability

CCSSM

PA Core Standards for Mathematics

Develop understanding of statistical variability

6.SP. 1

Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.

6.SP. 2

Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

6.SP. 3

Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.

Summarize and describe distributions

6.SP. 4

Display numerical data in plots on a number line, including dot plots, histograms, and box plots.

6.SP. 5

Summarize numerical data sets in relation to their context, such as by:
a. Reporting the number of observations.
b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.
d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

This section continues on the next page...

6.SP - Statistics \& Probability

CCSSM	PA Core Standards for Mathematics
6.SP. 1 Continued... 6.SP. 2 Continued... 6.SP. 3 Continued... 6.SP. 4 Continued... 6.SP. 5 Continued...	CC.2.4.6.B. 1 Continued...
Pennsylvania System of School Assessment (PSSA)	M06.D-S Statistics and Probability
M06.D-S. 1 Demonstrate understanding of statistical variability by summarizing and describing distributions	
M06.D-S.1.1 Display, analyze, and summarize numerical data sets in relation to their context.	M06.D-S.1.1.1 Display numerical data in plots on a number line, including line plots, histograms, and box-and- whisker plots.
	M06.D-S.1.1.2 Determine quantitative measures of center (e.g., median, mean, mode) and variability (e.g., range, interquartile range, mean absolute deviation).
	M06.D-S.1.1.3 Describe any overall pattern and any deviations from the overall pattern with reference to the context in which the data were gathered.
	M06.D-S.1.1.4 Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

